Maximize Your Plant Maintenance with SAP
Contents at a Glance

1. The Maintenance Health Assessment ... 21
2. SAP PM Basic Knowledge .. 43
3. SAP PM Education ... 81
4. Successful SAP PM Techniques .. 99
5. Technical Object Structure Functionality — Setting the Foundation ... 125
6. Capturing the Reliability History Needed To Improve 163
7. Effective Planning, Execution, and Improvement of Maintenance Work ... 209
8. Implementing an Effective SAP Plant Maintenance Preventive Maintenance Strategy ... 269
9. Getting the Most Out Of Your SAP Plant Maintenance Data ... 303
10. Measuring SAP Plant Maintenance Performance Health 341
A. The Authors ... 363
Contents

Acknowledgments ... 15
Preface ... 17

1 The Maintenance Health Assessment .. 21

1.1 Maintenance Needs a Computerized Maintenance Management System .. 22
 1.1.1 The 21st Century Role of Maintenance ... 22
 1.1.2 We Are Deemed to Repeat History If We Do Not Use It 23
1.2 The Required Mindsets for Reliability Success .. 25
 1.2.1 The Passion for Improvement and the Culture of Accountability 25
 1.2.2 Being Able to “Take One for the Team” .. 26
 1.2.3 The Production and Maintenance Partnership .. 27
 1.2.4 Equipment Does Not Have to Fail .. 27
 1.2.5 The Only Two Success Parameters that Really Matter 27
 1.2.6 Data-Based Decision-Making .. 28
1.3 The Methodology of Reliability Success ... 29
 1.3.1 Roles and Responsibilities .. 29
 1.3.2 Organization and Accounting of the Asset .. 31
 1.3.3 Work Identification and Control .. 32
 1.3.4 Planning ... 32
 1.3.5 Scheduling .. 33
 1.3.6 Managing Change .. 33
1.4 The Skills that Drive Reliability Success ... 34
 1.4.1 Craft Skills ... 34
 1.4.2 Computer Skills .. 35
 1.4.3 Process Knowledge .. 36
 1.4.4 Equipment Knowledge .. 36
 1.4.5 Common Sense .. 36
1.5 Testing for SAP PM Readiness ... 38
 1.5.1 Maintenance Best Practices Assessment .. 39
 1.5.2 Organization Readiness Assessment .. 39
Contents

1.5.3 Converting Maintenance Best Practices to SAP PM Configuration ... 40
1.5.4 SAP PM Readiness to Go-Live .. 40
1.6 Summary ... 41

2 SAP PM Basic Knowledge ... 43

2.1 The True Return on Investment of SAP PM .. 43
 2.1.1 The Age of Computerized Maintenance Management 44
 2.1.2 Where SAP PM Returns the Investment 45
2.2 SAP Overview from a Plant Maintenance Perspective 48
 2.2.1 The Bigger SAP Picture .. 49
 2.2.2 SAP Plant Maintenance Structure ... 51
 2.2.3 Plant Maintenance Process Overview 52
 2.2.4 Linking the PM Component to the Rest of the Enterprise 54
 2.2.5 Following the Money Trail .. 56
 2.2.6 SAP Overview Summary ... 57
2.3 Beginning with an End in Mind ... 57
 2.3.1 The Phased Implementation Approach Barriers 58
 2.3.2 Diving into the Deep End of the Pool 59
 2.3.3 Weaning off of the Legacy System 60
2.4 The SAP Software Hierarchy .. 61
 2.4.1 The SAP “Operating System” ... 62
 2.4.2 SAP PM Configuration .. 63
 2.4.3 User Configuration ... 71
 2.4.4 SAP Permissions and Role Definition 72
2.5 Evolving from the Newspaper Culture to the Internet Culture 72
 2.5.1 Custom Reporting ... 73
 2.5.2 Daily Information Needs ... 74
2.6 Envision an Effective Implementation ... 77
 2.6.1 Solidify the Maintenance Business Practices 78
 2.6.2 Understand the SAP Tool ... 78
 2.6.3 Understand and Lead the Organization Mindsets 78
 2.6.4 Make SAP PM Reflect your Maintenance Business Practices .. 78
 2.6.5 Plan for a Smooth Operating Transition 79
 2.6.6 Educate the Organization to Succeed 79
2.7 Summary ... 79
3 SAP PM Education ... 81

3.1 How Ineffective Training Will Manifest Itself 81
 3.1.1 Divergent Methodologies ... 82
 3.1.2 The Illusion of Good Reporting 82
3.2 Dealing with Audience Diversity .. 82
 3.2.1 How to Deal with Different Learning Styles 83
 3.2.2 Dealing with the Lack of Computer Skills 83
 3.2.3 Difference in Knowing SAP and Teaching SAP 83
 3.2.4 Managing the Pace of Learning 84
3.3 How to Educate and Train at the Same Time 84
 3.3.1 Teach What They Want To Know 85
 3.3.2 What’s in It for Me? .. 85
 3.3.3 Training on the Maintenance Best Practices 86
 3.3.4 Leadership Participation ... 87
 3.3.5 Working in “Perfectville” ... 87
 3.3.6 Teaching the Plant Information 88
3.4 SAP PM Teaching Tools ... 88
 3.4.1 Lesson Plans .. 89
 3.4.2 Training Manuals ... 90
 3.4.3 Cheat Sheets .. 92
3.5 Train the Trainer Methodology ... 92
 3.5.1 Barriers in the Train the Trainer Concept 93
3.6 Testing for and Expecting Knowledge 94
 3.6.1 How to Test .. 94
 3.6.2 Making Sure the Organization Understands the Training ... 95
3.7 Summary ... 96

4 Successful SAP PM Techniques ... 99

4.1 What Systems Require Continuous Support 99
 4.1.1 Identifying What Needs “SAP PM” Preventive Maintenance .. 99
 4.1.2 The SAP PM Champion ... 105
 4.1.3 Plant Leadership .. 107
4.2 Managing the Pace of Effective Support 110
 4.2.1 Important to Teach in the Beginning 110
 4.2.2 Process to Feed the Need for More over Time 111
 4.2.3 Validate the Education Investment 111
4.2.4 Training Environment for Users ... 112
4.2.5 Education on a Fully Functional System 112
4.2.6 Proving the Value ... 113

4.3 This Is a Healthy SAP PM Installation ... 113
4.3.1 Phased Success ... 113
4.3.2 SAP PM Health Checks .. 115
4.3.3 The Renewal Process ... 120

4.4 Job Descriptions and Skills Needed .. 121
4.4.1 Craftsman ... 122
4.4.2 Maintenance Planner ... 122
4.4.3 Maintenance Supervisor ... 122
4.4.4 Production Leader .. 122

4.5 Summary .. 123

5 Technical Object Structure Functionality — Setting the Foundation ... 125

5.1 Dependable Technical Object Structure Benefits 125
5.1.1 Process-Based Reliability Information 126
5.1.2 Equipment-Based Reliability Information 126
5.1.3 Cost Tracking ... 130
5.1.4 Automatic Administrative Data Downloading (Data Transfer) ... 131

5.2 Technical Object Functionality .. 131
5.2.1 The Difference Between Functional Locations and Equipment ... 132
5.2.2 Functional Locations ... 132
5.2.3 Equipment ... 133
5.2.4 Materials, Serialization, and Bills of Materials 142
5.2.5 Technical Object Support Functionality 145

5.3 Common Application and Configuration Opportunities 151
5.3.1 Equipment Classification System 151
5.3.2 Catalog Profiles and Catalogs .. 152
5.3.3 Document Attachment ... 154
5.3.4 ABC Indicators ... 155
5.3.5 Work Center CO Activity Types ... 156
5.3.6 Planner Group Assignment Issues to Specific Equipment — Electrical versus Mechanical 157
5.3.7 Functional Location / Equipment Structure Design 158
Contents

7.2 Order Design and Configuration Overview 211
 7.2.1 The Order Link to Reliability Failure History 213
 7.2.2 The Maintenance Order Header .. 215
 7.2.3 Detailing the Work Plan in the Order Operations 229
 7.2.4 Setting up the Scheduling Process 232
 7.2.5 Setting up the Confirmation Process 234
 7.2.6 Setting up the Cost Tracking in Plant Maintenance 235
7.3 Order Application Overview Work Order Application 238
 7.3.1 Creating the Work Order .. 238
 7.3.2 Work Order Header Data .. 239
 7.3.3 Work Order Operations .. 243
 7.3.4 Work Order Scheduling .. 252
 7.3.5 Time Confirmation Process ... 255
 7.3.6 Maintenance Costing .. 258
7.4 Common Application and Configuration Opportunities 259
 7.4.1 Lack of Documented Manual Processes and Role Descriptions .. 260
 7.4.2 The Absence of Maintenance Best Practices Influence in the Order Configuration Process 261
 7.4.3 The Difficulty of Implementing the Confirmation and Feedback Process ... 262
 7.4.4 Isolated SAP PM Installations ... 263
 7.4.5 Work Order Types ... 263
 7.4.6 PM Activity Types .. 264
 7.4.7 System Condition ... 265
 7.4.8 CO Activity Types ... 266
 7.4.9 User Statuses ... 266
 7.4.10 Detailing Orders and Operations 267
7.5 Summary .. 268

8 Implementing an Effective SAP Plant Maintenance Preventive Maintenance Strategy .. 269
 8.1 Why Having a Good Preventive Maintenance Process Tool is Important .. 269
 8.1.1 The Definition of Preventive Maintenance Success 270
 8.1.2 The Basic Preventive Maintenance Operating Principles ... 270
 8.2 SAP Preventive Maintenance Functionality 271
<table>
<thead>
<tr>
<th>8.2.1 Plant Maintenance Task Lists</th>
<th>273</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2 Time-Based versus Performance-Based Preventive Maintenance</td>
<td>276</td>
</tr>
<tr>
<td>8.2.3 Maintenance Plans</td>
<td>277</td>
</tr>
<tr>
<td>8.2.4 Maintenance Packages</td>
<td>280</td>
</tr>
<tr>
<td>8.2.5 Maintenance Strategies</td>
<td>281</td>
</tr>
<tr>
<td>8.3 SAP Preventive Maintenance Application</td>
<td>283</td>
</tr>
<tr>
<td>8.3.1 Task List Application</td>
<td>283</td>
</tr>
<tr>
<td>8.3.2 Application of the Maintenance Plan</td>
<td>286</td>
</tr>
<tr>
<td>8.4 Common Configuration and Application Barriers</td>
<td>296</td>
</tr>
<tr>
<td>8.4.1 Understanding SAP Preventive Maintenance Functionality</td>
<td>296</td>
</tr>
<tr>
<td>8.4.2 Assigning Confirmable Steps to Preventive Maintenance Routes</td>
<td>297</td>
</tr>
<tr>
<td>8.4.3 Task List Design and Numbering Conventions</td>
<td>298</td>
</tr>
<tr>
<td>8.4.4 Applying Effective Scheduling Parameters</td>
<td>298</td>
</tr>
<tr>
<td>8.4.5 Deadline Monitoring Application</td>
<td>299</td>
</tr>
<tr>
<td>8.4.6 Defining Preventive Maintenance Success</td>
<td>300</td>
</tr>
<tr>
<td>8.5 Summary</td>
<td>300</td>
</tr>
</tbody>
</table>

9 Getting the Most Out of Your SAP Plant Maintenance Data | 303 |
9.1 The Value of Data in SAP PM	303
9.1.1 Organizational Alignment of Getting the Work Done	304
9.1.2 Practical Usages of Basic Information	306
9.1.3 The Skill of Improvement Opportunity Identification through Pattern Recognition	307
9.2 Customized SAP Reporting Available to SAP PM	309
9.2.1 SAP Custom Reporting	309
9.2.2 Business Warehouse	310
9.2.3 Queries	310
9.3 The Plant Maintenance Information System	312
9.3.1 Standard Analysis	313
9.3.2 Multi-Level List Displays	317
9.3.3 List Reporting and Navigation	318
9.4 Reporting Application of Selection Screens and List Displays	322
9.4.1 Building a Reporting Framework for the Reliability Stakeholder	322
9.4.2 Standard List Reporting Creation and Usage	325
Contents

9.4.3 Creating Variants .. 326
9.4.4 Selection Screen Skills Sets .. 332
9.4.5 Layout Screen Skill Sets .. 336
9.4.6 Tips and Tricks to Personalizing Selections 339
9.5 Summary ... 340

10 Measuring SAP Plant Maintenance Performance Health 341

10.1 You Get What You Measure .. 341
10.2 SAP Effectiveness Metrics .. 342
10.2.1 Technical Object Assessment .. 343
10.2.2 Notification Assessment ... 348
10.2.3 Work Order Assessment ... 352
10.2.4 Preventive Maintenance ... 356
10.3 Summary ... 360

A The Authors .. 363

Index .. 365
The root of every successful SAP Plant Maintenance (PM) implementation is the firm foundation provided by the organization’s maintenance and reliability best practices. In this chapter, we will discuss how the best practices and SAP PM are linked, and how to recognize what the firm foundation looks like.

1 The Maintenance Health Assessment

Every project begins with a statement of the present state and the opportunity to improve. Prior to attempting to gain reliability value, it is important to do a zero-based budgeting assessment of the maintenance processes and understand what your organization is trying to accomplish with equipment reliability. Computer systems do not correct problems; they just optimize what already exists.

In this book, we will assume that increased equipment reliability is the goal. The most important things to understand before starting are the tools and capabilities needed to even start the journey. This chapter will address what to assess prior to combining a reliability improvement effort with an SAP Plant Maintenance (PM) implementation. SAP PM is a powerful tool to use to achieve consistent reliability improvement, but maintenance organizational readiness is an often overlooked step in the implementation process. For those who keep the equipment running, we will discuss how to build the firm foundation of Reliability Improvement with the SAP PM tool.

The first discussion focuses on why the computer plays such a large role in today’s maintenance organization and the context under which manufacturing organizations operate today. From there, we will discuss the mindsets, or organizational soft skills, required to support a reliability improvement focus. Next, an overview of the classic maintenance best practices will be discussed. To complement the processes, the skills to execute those processes are examined. With all of the assessment concepts reviewed, the task of testing for readiness concludes the maintenance health assessment process. When the plant solidifies these attributes, the SAP PM implementation goes beyond a successful startup. It will consistently fuel the reliability improvement effort across the plant and across the company.
1.1 Maintenance Needs a Computerized Maintenance Management System

Many of us started our maintenance careers executing work orders based on verbal requests, or even with carbon-papered written work requests. In that day and time, that was all we needed. We will explain why computers are now a vital part of the tool belt for the 21st century maintenance professional.

1.1.1 The 21st Century Role of Maintenance

The speed of change in the manufacturing environment is nearly exponential, and it’s not just the new technologies that are moving the targets. We are now all part of a global manufacturing world where technology that is available to us and our competitors is also available to people who want to be our competitors. The profit security that once existed has been replaced with the drive to stay competitive – with product cycles now being months instead of years. With this as our challenge, maintenance organizations need to better understand their roles in the 21st century manufacturing and service provider world, a world were technology is available to everyone, with a transportation system in place to deliver anywhere. It is important to learn about the two paradigms that have changed recently.

Our Job is Not to Fix Things; It’s to Keep Equipment Running

Nearly every manufacturing plant bulletin board has proudly displayed a memo from the plant manager or production manager that congratulated a team of maintenance craftsmen for repairing or replacing a bottleneck piece of equipment in record time. Mechanics live for the thrill of the fix under pressure; that is what gets the adrenaline going. The praise only reinforces the behavior. On the other hand, it is rare to see a similar congratulatory note for a daily preventive maintenance route that has resulted in no equipment downtime over an operating period.

The paradox is that if effective preventive maintenance was performed, the whole situation would have been avoided. When equipment does not perform, we have to admit each incident as a failure of the goal to keep the equipment running. In today’s manufacturing environment, all downtime is painful to the bottom line, and there are too many manufacturing lines waiting to take your market share.
Those Really Were the Good Ole Days

A very common comment in manufacturing plants with regards to entering failure codes and text, as well as feedback on work order operations improvement is, “Why do I need to type in all of this information? Those new guys should have to learn the hard way, just like I did.” In this case, we often relate a personal experience of accidently causing plant downtime during a time when it cost the plant a loss of close to half a million dollars out of a $40 million monthly profit. Today, the same mistake may come closer to eliminating the entire monthly profit of $1 million, given the global marketplace in which we all work. So to avoid this type of human error, the least a senior craftsman can do to leave a maintenance legacy is to leave the younger mechanics with an advantage in technical knowledge, because their profit margin is much more sensitive. The challenge now is to replace the paper or verbal work order processes with a methodology that provides maintenance intelligence at the point of planning and execution. This is where SAP PM fits in.

1.1.2 We Are Deemed to Repeat History If We Do Not Use It

The only situation worse than having a critical equipment failure happen is having it happen twice, for the same reason. It was not that long ago that maintenance people were renowned for their repair expertise. Just to be practical, the need for repair skills will always exist, and for that reason, it will always be important to document every task and every preparation to each repair. As equipment runs better, the practice at repair will become less frequent, and the need to refer to the instruction set will become more important. If you, as a maintenance person, say that you do not need to be told how to fix this equipment, it is possible that the poor reliability has provided you the opportunity and repetition to memorize all the steps and nuances to execute a good repair. As competition between manufacturing plants increases, the plants that run well enough to not remember how this equipment is fixed will succeed. These are the plants that will need the documentation of the tasks the most to build that database.

The types of information that will add value to the reliability improvement effort are:

- Detailed work steps with labor counts and durations
- The materials needed to execute those steps
The history of what that equipment has done in the past
The damage that was done
The root cause for the damage
The specific part of the equipment that was damaged
The symptoms that first indicated a problem

All of this information will be helpful any time a work order is created and executed. The only issue is that someone needs to actually write all that information down, and make it accessible to you as either a planner or a craftsman. Multiply this number by the number of equipment in the plant (thousands to hundreds of thousands in most plants), then multiply this by the different repair processes and failure modes, and then make sure that the information is up to date and in real time. It becomes evident that all of this information will create a very large database — and no one will have the ability to review comprehensively. At some point, users think that of the thousands of inputs, missing a few data entries will not make a difference and no one can possibly review it all. The reality is that it is the sum of all the data creates the pattern that determines where to look for the detail of individual inputs. The data seed will bear fruit at some point in the future only if the organization is disciplined and dependable.

The argument made above was about getting better at preventing failure rather than accepting failure. The argument should take the failure information listed above and be more proactive. You should take the information above and:

1. Design preventive maintenance inspections and repairs that eliminate the failures.
2. Assemble the collective failure information so reliability priorities are clear and data based, so limited resources can be focused where the best return is.
3. Learn from this vast amount of information how not to let this problem happen again, from the engineer who specifies the next piece of equipment, to the predictive maintenance team, to the preventive maintenance mechanic.

As maintenance people, we all need access to this information in real time. SAP PM is designed to do this for you, and in this new age of maintenance and the global marketplace, there is no other way to compete. Knowledge is the power to succeed.
1.2 The Required Mindsets for Reliability Success

Part of any improvement effort is to establish and publicize the goals, but to establish some maintenance and reliability mindsets needed to be successful, or in other words, the “How.” The goal is clear — to increase equipment reliability; the challenge is now how to accomplish that. Part of the how is what the principles are that will guide the reliability improvement effort. Very often, this step is not implemented, and often not even discussed in the process of improvement and SAP PM implementation.

Before tackling any mindsets, it is very important to acknowledge and inherently accept the premise that every manufacturing facility has the two fundamental goals to ensure a safe working environment and to follow all regulatory requirements within the plant’s jurisdiction. With safety and legal responsibilities as absolute requirements, the goal of every manufacturing and service organization is to make money.

1.2.1 The Passion for Improvement and the Culture of Accountability

The energy to improve begins with the leadership of the organization. The vision must be clear, the expectations understood, and the accountabilities enforced. The rails upon which improvement rides are the numerical metrics that are used to describe the vision, set the standards of performance, and establish the measuring stick of the gap closing improvement (or inactivity). All three of the characteristics are required for reliability improvement to progress, and the absence of one creates a significant barrier for the other two. Back in the good old days, we did not have to hold accountabilities, or even measure performance for that matter, but now it is a different story. Holding accountability, the hardest of the key success traits to execute, is most often the biggest barrier. With the SAP tool, the accessibility of the numerical performance metrics is more than abundant, and establishing a vision with expectations can be easily implemented and tracked. However, metrics without the discipline to act are hollow. It is important to acknowledge the notion of the computer data age of management. Organizations will typically fail when the data is used punitively without attempting to support removing the barriers or even failing to understand them.

The successful strategy is to use the data with the intent to teach and learn. Many mechanics report that all of this data primarily exists to catch them doing some-
thing wrong. It can also be used to create the fanfare of success, and if the passion for improvement is to exist at every level, then that passion has to be supported and rewarded, and proving that accountability is designed to create improvement, not punish failure. It is important to understand, however, that there is a part of the bell curve that cannot or will not perform according to expectation. Leadership has no choice in this maintenance environment but to help this individual find a more successful role in another position. Skills and effort have to be a prerequisite for executing maintenance improvement.

1.2.2 Being Able to “Take One for the Team”

Most experts claim that standardization is the key to success in today’s corporate environment where synergy and economy of scale is needed to compete. A question lacking in that discussion is “Is the maintenance organization willing to suboptimize some of their maintenance processes to optimize the overall manufacturing process?” With stand alone maintenance computer systems, we became comfortable with our jargon and processes to the exclusion of the rest of the business. In the transition to enterprise computer systems, maintenance will have to share the jargon of the other parts of the business, financial and otherwise.

It should not be possible to define a kilogram for an equipment weight as a different entity from a kilogram of a finished manufactured product. It should not be possible to name a storeroom part what it is uniquely locally called, as opposed to agreeing company-wide whether to call a welding rod a welding rod or an electrode. These standardizations allow for the free calibrated flow of information across the entire organization. The challenge that fundamentally exists within this standardization is the need to dedicate the effort to learn these standardizations, also called “Taking One for the Team.” It is even more difficult when a company is slow to take advantage of the standardization and realize the synergistic potential.

Even if the synergy is realized, every organization will, at the very least, have a transitional phase that will create barriers, but if coordinating a large company as one, and realizing the economy of scale makes a difference to the bottom line, it will be a wise investment. An important twist on this principle is avoiding the “Not Invented Here” syndrome, which is best described as when organizations reward utilizing processes and products developed from other corners of the company over home-grown ingenuity, the practice will become common, and more importantly expected and rewarded.
1.2.3 The Production and Maintenance Partnership

This concept is often addressed as a maintenance best practice, but we include it in mindsets based on the behaviors that are experienced in plants that struggle with reliability improvement. Teamwork is also the mantra of every plant, but its success can be hampered because it is not just about tolerating the other players on the team, but also about being committed to the team's success, sometimes at the expense of an individual's. One example that speaks volumes to this principle is the downtime tracking process. Most production lines today have a reliable detailed process to track exceptions to bottleneck capacities. The energy that maintenance and operations expend to debate who should be charged with the downtime sometimes outweighs the energy to solve the actual reliability issue.

In most cases, the production department should own the downtime tracking process, and their perception is what should go on record, but maintenance should have the opportunity to add their input. We are all there to make product or deliver a service. We share the same goal and need each other to help maintenance with process issues and production with equipment issues. Partnership is not just about having regular meetings or even good communication; it is about doing what is necessary to help achieve the overall goals.

1.2.4 Equipment Does Not Have to Fail

A principle that is not lost on many maintenance organizations is the self-fulfilling prophecy. One of the most spirited questions to ask any training session is, “Do you believe that equipment is going to fail at some point?” The involuntary response is typically that failure is the nature of all equipment. The follow-up question will be, “Where does the mechanic sit on the airplane to be in the best position to work on an engine malfunction?” The point is made. It’s a mindset that it is possible to run the critical equipment 100% of the time between scheduled outages, and for production managers and operators, this should be the expectation.

1.2.5 The Only Two Success Parameters that Really Matter

The key to success is to focus on what is paramount to success. Maintenance organizations have typically focused on hours, backlogs of open work orders, completed orders reports, and many other types of performance metric units. Quite frankly, there are only two metrics that are universally used and valued by the entire manufacturing organization: time and money. SAP is based on tracking time
and money, and as maintenance people, we need to understand and utilize the universal business language.

Maintenance typically focuses on adherence and backlog numbers. While they are very important to maintenance processes, they are process metrics, not bottom line metrics. One of the best examples of cost awareness in any plant was a plant that actually put price tags on storeroom parts to increase awareness. Maintenance spending is a direct deduction from the profit bottom line. Equipment downtime can be a very large contributor to cost and profit avoidance. The rest of the metrics are informational. Time has a dual role in the equation. Time is the business wide common denominator that will be used to coordinate and align resources to most efficiently execute any task that requires multiple resources (and minimize the cost) as well as be the first derivative of cost itself, the time value of money.

1.2.6 Data-Based Decision-Making

There is one more organizational characteristic that will tie all of the elements above into a cohesive business process, and will be the commitment to the use of data based decision-making. It is not just the fact that decisions are made from management report data; the success of utilizing data requires that every level of an organization understands and is focused on the metrics of success, not just what the plant manager sees. The real value of possessing real time, and in most cases predictive maintenance models, allows those doing the work to measure the progress of goal attainment on a daily basis, rather than waiting for the month-end summary reports. The days of hoarding information within the plants, and even between plants, should be in the past. The most direct route to the bottom line is helpful information to the mechanic in a maintenance organization.

The psychological aspect of data-based decision making is often the tougher barrier to overcome. If the goals, metrics, and reporting achieve the business decision-making needs, there is no longer a dependence on emotional, prophetic, or lucky “gut feels” that maintenance sometimes was forced into in the past. Just as mechanics were rewarded for fixing equipment, managers and supervisors were rewarded for being lucky or having a feel for just what to do. With a solid data-based decision-making process in place, the right answer is more likely more obvious to everyone supporting the solution.
1.3 The Methodology of Reliability Success

One of the greatest misconceptions of SAP PM is that SAP will add structure and define maintenance processes for the user. This is almost a fatal assumption for reliability improvement. Even though we will spend most of this book explaining the flexibility and capability of SAP PM, it is vital to understand the requirement to implement SAP PM on top of solid maintenance and reliability business processes. If an organization does not require the business process of planning corrective maintenance orders, SAP cannot make a planner plan an order, just allow him the tool to plan.

1.3.1 Roles and Responsibilities

When there is more than one person involved in executing a task, there needs to be a clear definition and understanding of each person’s role. This is certainly true within a complex plant maintenance organization. When craftsmen depend on the quality work package from the planner, the handoff of the deliverable is seamless, and in terms of the bottom line, wastes no time and no money. Reliability Engineers depend on the quality of failure data submitted by a craftsman at the end of the work process. The quality of the business decisions that emanate from the data analysis should produce more lucrative improvement opportunities. The additional opportunity with SAP is that permissions to execute specific transactions are categorized by role also. Role and transaction combinations are configurable, but without role clarity, within SAP, the transaction capability will be greatly hampered. Figures 1.1 and 1.2 are examples of maintenance business practices flow diagrams that detail the steps required to identify and process maintenance corrective and preventive orders.

The work process diagrams represent how maintenance should be performed. The example in Figure 1.1 details the work steps that identify what maintenance order needs are required to maintain reliability and how to prepare these orders for execution. The value of this document is that it allows for consistent communication to all of the equipment reliability stakeholders of the road map of how to review order progress are and how to support the maintenance process. Figure 1.2 provides a similar view of the work execution and feedback process.
For each of these steps in Figures 1.1 and 1.2, or any steps that fill the needs of each plant, the assignment of task owners is key to executing an effective maintenance strategy.
1.3.2 Organization and Accounting of the Asset

The central nervous system of asset reliability is the structure on which the equipment hierarchy is based. Figure 1.3 demonstrates a typical asset structure of a portion of a utility plant, from the plant general level down to a boiler vessel level. This structure is important because it allows you to understand the operating and maintenance costs for Boiler 1 versus Boiler 2.

![Process and Accounting-Based Asset Structure](image)

We would also want the ability to drill down into the structure to compare maintenance and operation costs in feed water supply processes for internal benchmarking, especially when there was foresight to standardize on feed water systems. The costs and reliability history flow according to the structure, and with an effective design, informational views into the hierarchy can localize opportunities for manageable action plans. An increase of the Feedwater reliability is more manageable than an increase in steam generation reliability.

It is important to follow the accounting and process rules within the structure. For example, in Figure 1.3, Boiler 1 is a plant-owned asset, and therefore requires a separation of hierarchy from the vendor-owned Boiler 2. However, for those who maintain the equipment regardless of accounting rule boundaries, easy access to all of the reliability history and costs is provided so you can compare Feedwater
Supply Systems within the SAP PM reporting capability. The ability to separate and conjoin histories even on top of a rigid accounting structure satisfies the organizational needs to identify cost and profit centers, but also allows the cross referencing of comparative operating areas for benchmarking. If the Feedwater Supply on Boiler 1 is a high-cost process, then there should be a concurrent effort to include Boiler 2's Feedwater Supply process.

1.3.3 Work Identification and Control

The riskiest maintenance activities are based on incomplete information. Much time is wasted trying to understand the interpretation of the original reliability problem, and the problem description is often delivered to maintenance as an assumed solution. Besides the uncertainty of whether or not the solution is correct, the fact that the symptoms are not captured creates a void in the reliability history that is often vital to root cause analysis and reliability improvement. With the size of work order backlogs and limited resources, it is important that the descriptions allow for a distinction between which activities should get approval to proceed, and which should be deferred or canceled.

1.3.4 Planning

Planning work is the bellwether approach for maintenance and reliability improvement, and for clarification we would like to offer a clear definition of planning. Planning in this context is not scheduling. Scheduling is when to execute. Planning is about preparation and designing what to do. The logical maintenance sequence is to understand the scope (Planning) and apply the scope at the best time (Scheduling).

First off, to reduce the emergency work so that the opportunity to plan is available, and secondly, to take advantage of that time to prepare the execution of the work for success. Without planning, SAP at best can become a tracking mechanism for failures without a reliable means to implement improvement. Without a planning process, there is no proactive way to communicate parts requirements to the storeroom to allow them the best chance of parts supply success, and no way to reliably communicate time frames to anyone affected by the reliability opportunity who needs to support the maintenance process.

Unfortunately, there is no direct handoff possible from emergency work directly to performing planning on all corrective and preventive maintenance work. The
transition requires an increased work load until the planning effort begins to pay dividends. The quality variable to track is the quality of planning and the amount of effort planning while still responding to emergency break in repair needs.

There are some SAP PM installations that do not staff a planning position or do not expect the planners to plan the work. If this is the case, this plant has no right to expect reliability improvement and if SAP PM is installed, and any competitive advantage that SAP PM can offer will go unrealized.

1.3.5 **Scheduling**

Success can be defined in degrees. Maintenance success can be defined as performing the work that was committed. To be competitive, a higher level of success requires performing the work when it is scheduled to be done. This is important because production teams often can have only limited windows of low-cost opportunity to perform either corrective or preventive maintenance tasks. Secondly, coordination of materials, tools, and skilled resources deserve special consideration given limited resources that most plants have available.

1.3.6 **Managing Change**

In theory, it is possible to have a stable enough environment that everything can be known or preplanned. Even if that utopia was achieved, change will inevitably happen and the ability to manage that change is the key to organizational success. Within maintenance, the ability to adapt to change is only exceeded by the need to document that change for any subsequent work, predictive, preventive, or corrective that will depend on that documentation to succeed.

It is also important to acknowledge the presence of the Reliability Centered Maintenance Methodology as a systemic approach to reliability improvement at this point. Many of the principles presented in this chapter can effectively feed a RCM methodology, but it is important to understand the foundational traits on which to rest an RCM process. Failure Mode Effects Analysis (FEMA) is a large part of the success of reliability improvement, but without the organizational discipline to capture the data and feed the improvement engine, the investment on these processes will come up short. As we mentioned in the preface, there are reliability applications that are state of the art that provide enormous control of the equipment reliability process. And every one of those successes has mastered the traits that are mentioned in this chapter.
Many publications exist on maintenance and reliability best practices. As users of SAP PM or implementers of SAP PM, these business practices are the foundation on which SAP PM has to be based. Just adding a computer system on top of disjointed maintenance best practices is akin to putting a Porsche engine in a dune buggy.

1.4 The Skills that Drive Reliability Success

There has never been a maintenance system that was able to flourish without some basic skills to succeed. Some skills are basic and classic; some are new and have evolved with the technology of the day. The best of the best learn how to balance all of these skills, but one fact will almost always be true, all of these skills are acquired over time and not by chance. Some people pick it up faster than others, but because a chain always breaks at the weakest link, all of these skills will need to pull their own weight in the maintenance effort required today. As the workforce ages into retirement, it is important that this transfer of skills and knowledge become an expectation. Today we need every competitive edge we can salvage.

1.4.1 Craft Skills

The most basic, and also the most endangered of the skills, for two divergent reasons, are the journeyman craft skills. The risk of losing the depth and breadth of being a journeyman mechanic or electrician reflects the evolution of the modern craftsman, and to some degree the evolution of society and technology. The days of the shade tree mechanic are fading, and the expectation of modular repairs, have had an effect on the maintenance craftsmen as a whole. Listening to bearings with a screwdriver has been replaced with highly sensitive and diagnostic vibration analysis equipment. This change presents a fear that the skills of reading a vibration signature analysis will overtake the pride of knowing how to properly install the bearing in the first place. In many manufacturing plants today, the older generation growls that the younger mechanics’ lack of the basic journeyman skills, and their inability to execute effective preventive and corrective maintenance. It has to make you wonder if we are building a generation of mechanics that want the computer to troubleshoot, and eliminating the craftsman’s cerebral troubleshooting skills. There is a place in maintenance technology for the artificial intelligence of the high-end maintenance diagnostic systems that are coming to
market, but in reality, there is a need to preserve the sanctity of the basic skills that are the foundation of maintenance excellence. Make no mistake about it, we will go to great lengths in this book to establish information and intelligence on how to make better maintenance decisions, but nothing will replace the skills and mental dexterity of a skilled millwright, welder, pipefitter, electrician, or instrument craftsman. If your organization is not expecting and testing for skills on an ongoing basis, then the gap between what business decisions you need to make and what you are capable of executing will grow larger every day.

1.4.2 Computer Skills

Sometimes the opposite of the previous argument occurs. Many of the newer maintenance technicians often complain of the inability of the older craftsmen to even attempt to utilize or master the computer skills necessary to execute the daily requirements of work execution and documentation.

A senior mechanic may refuse to use the computer, with the impatience that we show towards people that write paper checks at the checkout line. Many manufacturing organizations have let the computer skill deficit sneak up on them in the maintenance arena. An organization that would not dare to have an electrician work on a new AC variable speed drive system without spending thousands of dollars in training may not expect the mechanic to add computer capability to their skill set, much less offer training to become computer literate.

Many maintenance organizations are paying separately for skill levels and areas to develop those particular skills needed to perform effective maintenance. The best of the best require basic computer skills and SAP PM skills as part of the job requirement. Computer skills are no longer just nice to have; they should be a condition of employment in a maintenance organization. Without them, the mechanic is operating on limited information, not able to make the best decisions possible when tackling preventive or corrective maintenance work, and also not being able to account for the costs they incur accurately in a way that truly represents what is occurring in reliability performance. Checking a part out of the storeroom using a work order number that has been scribbled on a piece of paper that has been in the mechanic’s pocket for weeks as a catch-all, bypassing the ability or desire to look up the correct work order number is a dangerous way to run a maintenance organization.
1.4.3 Process Knowledge

Some of the best maintenance mechanics are or were operators at some point in their careers. It does little to understand the workings of a pump in an ideal setting when cavitation problems appear as a result of an upstream process problem. Diagnosing mechanical, electrical, or instrumentation issues without process knowledge is ignoring the context of the problem. As we will demonstrate later in the process of reliability failure symptom documentation, it also is important to be able to recognize process issues through hearsay, because it is rare that the craftsman is present when a failure occurs. On the proactive side, when a mechanic performs a preventive maintenance route on a finishing line that is preparing to wrap 800 kg rolls when it typically runs 300 kg rolls, understanding how you adapt to the process variation is often the difference between uptime and downtime.

1.4.4 Equipment Knowledge

The complexity of equipment today presents a challenge that did not exist a few decades ago. Compensation for the increased complexity is sometimes modularity and diagnostic capability; however, there will always be basic equipment knowledge that is part of the skill set needed to ensure reliability. Preventive maintenance routes will not be and should not be so detailed that anyone off of the street could perform an effective route. Detailing to this level will create a certain amount of knowledge laziness. There is a delicate balance of equipment familiarity versus general knowledge. For those of us that have the ability to have the area concept of maintenance assignment, it goes without saying that a mechanic that can build an extensive knowledge of equipment history, and share that equipment history in SAP PM for others to utilize becomes a valuable asset to any maintenance organization. To balance the scales on this point, there is the perception that documenting everything makes the mechanic eventually replaceable and that concern will exist. The bottom line is that for the foreseeable future, the mechanics that apply the skill sets toward effective preventive maintenance will always be needed. Our evolution as craftsmen will include the skills to improve and apply what we learn with the information we use.

1.4.5 Common Sense

We mention this last skill set as a balance to all of the technical skills sets mentioned previously. With all of the data and reporting that will be at your finger-
The Skills that Drive Reliability Success

1.4

tips, it will be important to put all information in context, and understand where common sense plays a part in equipment maintenance, as well as how SAP PM supports reliability. Common sense is practical judgment that is not based on any specialized knowledge. An example is designing preventive maintenance inspection routes in a geographic pattern that makes sense, left to right, top to bottom, etc. This concept should translate into the SAP PM notifications and orders being designed on the page to input fields from top to bottom, in a way that similarly satisfies SAP PM sequential needs (hint: SAP will have an amazing ability to automatically load fields if given the chance).

If you are setting up the screen layout for notifications and orders, it is always of value to review the layout for logical flow of the mechanics input process against the data requirements and defaults of SAP. We have seen illogical input flow for the floor user in many installations, which creates confusion on the intent of the notification and order. Confidently navigating a notification or order should be well within the skill set of a manufacturing operator or mechanic. Creating an SAP PM input maze is outside of what is sensible, and many mechanics are relegated to using simplified Graphical User Interfaces (GUI) for SAP PM as a substitute for good configuration design. GUIs simplify the input, but deny the craftsman the skill to use SAP for his own benefit.

The other facet of common sense that is extremely important is what we will call pattern recognition. An example of the data SAP PM will provide you as a reliability stakeholder at the end of an operation period is shown in Figure 1.4. The representation of downtime cross referencing equipment type and failure root cause in Figure 1.4 allows triangulation of the reliability improvement steps with the greatest value.

This particular formatting of data is a skill that is essential to deal with real time reporting processes. There is nothing in this report that specifically mentions that the focus for next year’s reliability improvement effort is to develop better processes for DC Motor preventive maintenance, as well as rotating equipment in general, and bearings in specific, but this process should be self evident to a maintenance and reliability professional, at all levels of the organization.

The skill sets needed for maintenance in the 21st century demand more diversity than in previous years. No mechanic can afford to just be an expert in one area, because it is the combination of these skills that synergize the knowledge needed to do the best job possible to maintain equipment reliability. A common complaint
the supervisors get from craftsmen is "do you want me working on the floor or spending time at the computer." The answer is both, and learn how to use the computer effectively so it does not dominate your workday.

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Description</th>
<th>DC Motor</th>
<th>AC Motor</th>
<th>Gearbox</th>
<th>Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Process Overload</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>1002</td>
<td>Lack Of Cleaning</td>
<td>211</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1010</td>
<td>Process Other</td>
<td>33</td>
<td>25</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>1100</td>
<td>Misalignment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1101</td>
<td>Worn Gear</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1102</td>
<td>Mechanical Seal Failure</td>
<td>333</td>
<td>612</td>
<td>1200</td>
<td>634</td>
</tr>
<tr>
<td>1103</td>
<td>Bearing Failure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1110</td>
<td>Mechanical Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>Failed Winding</td>
<td>23</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1201</td>
<td>Brush Failure</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1210</td>
<td>Electrical Other</td>
<td>456</td>
<td>345</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1300</td>
<td>Lack Of Lubrication</td>
<td>340</td>
<td>600</td>
<td>234</td>
<td>456</td>
</tr>
<tr>
<td>1900</td>
<td>Do Not Know</td>
<td>112</td>
<td>454</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1635</td>
<td>2257</td>
<td>1468</td>
<td>1532</td>
</tr>
</tbody>
</table>

Figure 1.4 Reliability Downtime Failure Coding Pattern Recognition

1.5 Testing for SAP PM Readiness

Many manufacturing organizations are caught in the cusp of maintenance transition, from a repair mindset to a preventive mindset, from a paper-driven work order process to a computer-based order management system. The rate of change in manufacturing is exponential, and the primary test for readiness is agility of the organization to be talented and flexible. Agility is important because the target is always moving. “We have always done it this way” should be a statement of the past. It will never get easier, but the reward for success will always be there when the correct methodologies are used.

The proper assessment process consists of four stages for SAP PM success: the maintenance best practices assessment, the organizational readiness assessment,
converting maintenance best practices to SAP PM configuration, and the SAP PM readiness to go-live.

1.5.1 Maintenance Best Practices Assessment

Assessing maintenance and reliability best practices is a common practice for many companies but many never understand the need for this assessment prior to an SAP PM implementation. Bypassing this effort is by far the biggest barrier to SAP PM implementation success. Classic maintenance best practices often include (but are not limited to) the following areas of assessment:

- Daily competency focus
 - Work initiation and prioritization
 - Planning
 - Order execution
 - Scheduling
 - Materials management
 - Production and maintenance partnership
- Equipment condition focus
 - Skills enhancement
 - Proactive maintenance
 - Condition monitoring
- Reliability improvement focus
 - Reliability analysis and improvement planning
 - Operator performed maintenance

Once the assessment and resulting gap closing activities are completed, the basis for a successful application of the SAP PM tool is in place to support reliability improvement.

1.5.2 Organization Readiness Assessment

As maintenance professionals, spending any effort on the soft skills is uncomfortable territory. If from the beginning of the company’s reliability improvement effort, there are clear expectations that the standardized processes will be reli-
giously followed, and that collective improvement will be rewarded over indi-

vidual success, then the journey through SAP PM implementation will be much more bountiful. “Optional” is often not allowed. This barrier is by far the largest barrier for the company falling short of realizing the return on investment in SAP PM. The assessment process here consists of measuring the track record of major process changes within the organization and how the organization responded. A long history of steady state operations is not the best predictor of the cultural change success that significant equipment reliability improvement and SAP PM implementation will depend upon.

1.5.3 Converting Maintenance Best Practices to SAP PM Configuration

There are many books and customers that will implement what their SAP PM configuration looks like in a good maintenance organization. SAP PM has the ability to set up a configuration that will support a company’s specific business practice, as opposed to the other way around. The work processes such as the flow diagrams shown in Figures 1.1 and 1.2 need to be detailed in the SAP PM configuration and task ownership. This book will detail the configuration barriers that many times exist in creating effective maintenance, but like every other process, preplanning will remove those barriers.

The most frustrating example of where this process is not realized is the initial configuration of the notification and order types, mostly because these two particular configuration choices are among the most difficult to realize and change after go-live. Because notification and order types are control parameters within SAP, the importance of differentiating the types is critical to establish a differentiation that matches where you are, and what success looks like. If there is no distinction between emergency orders, corrective orders, and preventive orders in the order types, then there is a limited ability to measure if the reliability improvement effort is at all successful, because a fundamental barometer of maintenance success is reduction of emergency and corrective orders, and an increase in preventive orders.

1.5.4 SAP PM Readiness to Go-Live

In all fairness, this assessment is the most performed of all the readiness activi-

ties because this addresses SAP PM functionality as opposed to maintenance and
reliability improvement. It is important to be able to account for all of the money and the resources within SAP, but to the maintenance person, this is only half of the battle, but still important. Maintenance people need to get work done, but the preceding steps are needed to make this SAP PM readiness really mean something. SAP PM Implementation Teams are very adept at this assessment process. One large advantage is the feedback for success or failure is immediate at go-live. The key elements for maintenance include (but are not limited to):

- Verification of the asset structure, including bills of materials
- Dealing with open work orders
- Stores materials availability process
- Accounting for resources used to pay the bills for:
 - Maintenance labor
 - Vendors and suppliers
 - Contractors

1.6 Summary

This chapter has detailed the major focus areas that comprise a health assessment of maintenance and reliability in an agile manufacturing organization. The focus areas that are addressed included:

- Establishing the business case for SAP PM
- Addressing the attitudes that drive reliability success with SAP PM
- An overview of methodologies of reliability success
- The skills that support the success of those methodologies
- The process to test for organizational preparedness

Take the time to notice that the criteria are diverse, from craftsmen skills to sacrificing for the greater manufacturing good. The common element throughout the assessment is the ability to capture and share across the entire company successes in preventive or corrective maintenance processes from and to all levels of the organization. Autonomy was coveted by most maintenance organizations 20 years ago, but their competitive abilities have been overtaken by organizations that have learned to collectively understand the shared goals, and have used the processes
and deliverables that made them successful. It is a combination of maintenance skills, teamwork, and vision that support reliability improvement, and provides the solid foundation on which SAP PM will flourish.

In the next chapter, we will take what we understand from the goals of maintenance and reliability, and add an understanding of how SAP, more specifically, how PM functions. Maintenance best practices drive SAP PM, not the other way around. They are vital to the success of the utilization of the SAP. Chapter 2 outlines how that flexibility exists to make that happen for your maintenance organization.
Index

A
ABAP, 62
ABC Indicator, 138, 155
Accessing, 324
Accountability, 108
Action Log, 222
Activity Codes, 140
Activity Report, 170
Activity Type, 221, 248, 312
Actual Costs, 258
Actual Duration, 255
Actual field selection, 175
Actual Time, 255
Actual Work, 255
Administration, 210
Approval, 185, 194, 206, 224, 251
Arrow Up, 91
Assembly, 145
Assessment, 341
Asset Accounting, 55
Attaching Documents, 128, 227
Auditing, 107
Availability Check, 226, 227

B
Backlog, 304, 305, 323, 325
Barriers, 201, 296
Basic Information, 306
Basic Navigation, 89, 90
Basic scheduling, 292
Batch program, 296
Bills of Materials, 144, 160, 346
Breakdown indicator, 196
Building blocks, 85
Business Area, 55
Business Warehouse, 310, 340

C
Calculation Key, 232
Call Horizon, 293
Call Object, 273
Capabilities, 111
Capital Investment, 219
Capture, 87
Capturing Failure
 Data, 197
 Information, 196
Capturing Notification History, 165
Catalog, 67, 152
Catalog Profile, 67, 138, 152, 180, 346
Cause Codes, 200, 201
Challenge, 83
Challenge of Data Volume, 75
Champion, 105
Change Management, 219
Characteristic, 147, 346
Cheat Sheets, 90, 92
Check Mark, 91
Check sheet, 94
Choose, 328
Classification, 220
Classifying, 197
Clearance Management, 228
Client, 50
Clipboard Paste, 334
CO Activity Types, 156, 266
Common Sense
 Screen Layout Logical Flow, 37
Communication, 104, 105, 304
Company Code, 54
Completion requirement, 294, 299
Component, 249
Computer Age, 45
Computerized Maintenance Management System, 22
Computerized maintenance management systems, 44
Computer skills, 83
Index

Condition indicator, 184
Configuration, 101, 107, 168
Confirmable Steps, 297
Confirmation, 234, 262, 297
Text, 257
Construction Type, 142
Continuous Support, 99
Control Key, 230, 231
Controlling Area, 55
Controlling Code, 55, 64
Controlling Component (CO), 50
Cost, 236, 316
Tracking, 235
Cost Center, 55, 56, 138
Cost control, 354
Costing, 258
Cost Reporting, 314
Craft, 243
Craftsman, 122
Craftsman struggle, 85
Creating Variants, 326
Criteria, 319
Criticality, 155
Cross Application Time Sheets, 258
Culture of Accountability, 25
Customization, 61
Customizing, 320
Custom Reporting, 73, 309, 340
Cycle Modification Factor, 293
Cycle sets, 288

Deadline Monitoring, 296, 299
Decision making, 113
Defaults, 221
Default Work Order Type, 178
Definition, 270
Deliver, 95
demographics, 351
Demonstrate, 95
describing the problem, 187
description, 204
detailing orders and Operations, 267
development client, 50
difference between functional Locations and Equipment, 132
discipline, 88
Display, 327
Display Variant, 319
document Attachment, 154
documented Manual Processes, 260
document Management System, 154, 227
downloading Information, 338
downtime tracking process, 27
Drill down, 190
duplication, 85, 205

Economy of Scale, 47, 54
Education, 111
effective Implementation, 77
effective training, 96
Effort, 244
Emergency, 218
Order, 213
Entering Data, 187
Environmental, 171
Equipment, 133, 343, 344
BOM, 144, 347
Classification, 127, 146, 151, 345
Criticality, 155
Hierarchies, 127
Master Record, 134, 160
Equipment Asset Management, 52
Equipment Assignment, 116
Equipment-based downtime, 44

D

Daily Competency Focus, 39
Daily Information Needs, 74
Damage, 199
Damage Code, 199
Data-Based Decision-Making, 28
Data Downloading, 131
Data Integrity, 303
Data Origin, 151
Process, 161
Data tables, 62
Data Transfer, 131, 149, 239, 343
Date, 183, 204
Equipment Classification, 48
Equipment Condition Focus, 39
Equipment Does Not Have to Fail, 27
Equipment Hierarchy, 31
Equipment Knowledge for Craftsmen, 36
Equipment Master Record, 54
Equipment Reliability, 22, 270
Estimated Costs, 258
Estimates, 120, 312
Evaluation, 237
Execute, 209
Execution, 352
Existing Display Variant, 331
Expectations, 94
External, 245
 Procurement, 232

F

Factory Calendar, 294
Failure, 308
Failure Cause Codes, 140
Failure Codes, 178, 346, 349
Failure Damage Codes, 140
Failure Feedback, 350
Field Selection, 215
Filtering, 336
Final Confirmation, 256
Financial, 211
Financial Component (F1), 50
Financial control, 47
Flexibility, 318, 340
Format, 176
Foundational, 114
Functionality, 113, 174
Functional Location, 132, 343, 344
 BOM, 144

G

Get Variant, 324
Global, 328, 332
Global Manufacturing, 22
Good Ole Days, 23
Goods Movements, 347
Group, 285, 298
 Counter, 285
Growth, 114

H

Hard copies, 92
Header Data, 239
Health Checks, 115, 121
Hidden, 321
Hide Selection, 320
Hierarchy, 315, 344, 345
History, 85, 163, 164, 175, 207, 306
Human Resource Component (HR), 52, 58

I

Implementation, 81, 99, 110
Implementation Guide (IMG), 64, 169
Implementation Strategy, 57
Improvement Strategy, 342
Inconsistent, 82
Information System, 66, 303, 312
Inspections, 270
Integration, 213
Internal, 245
Internet Culture, 74
Intimidating, 95
ISO, 171
Issues list, 107
IT support, 100

J

Job Descriptions, 121
Journeyman Craft Skills, 34

K

Key Date, 294
Key for Calculation, 247
Index

L

Layout, 319, 322, 328, 330
 Screen, 321
 Variant, 326, 327
Leadership, 87, 103
Learning styles, 83
Legacy System, 60
Lesson Plans, 89
List displays, 75
List Reporting, 318, 325
Logical flow, 202
Long text, 175, 176, 188, 203, 214

M

Maintenance Activity Type, 220, 241, 315, 353
Maintenance and Service Processing, 66
Maintenance Best Practices, 86, 341
Maintenance Business Practices
 Flow diagrams, 29
 Maintenance Business Process, 29
 Alignment to SAP PM Configuration, 40
 Maintenance Common Sense, 36
 Pattern Recognition, 37
Maintenance Computer Skills, 35
Maintenance cost reporting process, 44
Maintenance History, 23
Maintenance Item, 273, 280, 287, 288, 290, 291, 357
Maintenance Legacy, 23
Maintenance Order, 53
 Operations, 53
 Planning, 32
 Scheduling, 33
Maintenance Package, 280, 282, 291
Maintenance Performance, 309
Maintenance Plan, 52, 65, 277, 280, 286, 287, 290
 Capabilities, 296
 Type, 279
Maintenance Planner, 122
Maintenance Plant, 51
Maintenance Request, 170, 348
Maintenance Strategy, 281, 285
Maintenance Success, 271
Maintenance Supervisor, 122
Maintenance Technician, 72
Maintenance Work Centers, 51
Main Work Center, 138, 240, 246
Malfunction Report, 170, 348
Managing Change, 33
Manual Call, 295
Manuals, 96
Manufacturer Data, 136
Mass Change, 229, 253, 284, 338
Master Data, 65
Master Data Maintainer
 Role, 72
Material, 142
Materials Management Component, 47, 52, 58
Measured, 94
Measurement Documents, 148, 257, 276, 347
Measurement Points, 147, 347
Measure Performance, 340
Micro-search, 334
Mining the Information, 75
Mobile Asset Management, 229
Modular, 84, 86
Modularized, 300
Money Success Factor, 27
Multi-Level, 318
Multi-Level List Displays, 317
Multi-Level List Report, 345
Multiple Counter, 288
 Plans, 278
Multiple Selections, 333

N

Narrowed, 332
Navigation, 336
Nested Search, 332
New Session, 91
Newspaper Culture, 74
No Remaining Work, 255, 355
Notification, 53, 116, 163, 164, 166, 175, 342, 352
 Application, 187
 Assessment, 348
Index

Assignment, 349
Descriptions, 350
Design, 167
Feedback, 257
Number Ranges, 67
Order Type Alignment, 67
Process, 163, 206
Processing, 182
Screen, 67, 172, 174
Type, 67, 169, 174, 201
Variant, 323
Not Invented Here syndrome, 26
Number Ranges, 178

Object Information Box, 189, 190, 205
Objective, 95
Object List, 290, 291
Object Part, 198
Object Part Codes, 141
Operating Principles, 270
Operational effects, 184
Operational Steps, 243
Operation Numbers, 231
Operations, 229, 243
Operator Inspection, 172, 173
Opportunity, 115
Optimization, 359
Order Configuration, 216
Process, 261
Order Header, 215
Order Link, 213
Orders, 342
Order Status, 119
Order Type, 217, 218, 219, 315
Order View, 229
Organizational Agility, 38
Organizational Units, 247
Organization Mindsets, 78
Organization Readiness, 39
Outline, 89

P

Pace, 84, 110
Packages, 358
Parking Lot, 87
Partner Function, 180, 182
Parts, 248
Passion for Improvement, 25
Pattern Recognition, 303, 307
Perfectville, 87
Performance-Based, 276, 281
Performance Health, 341
Performance Metrics, 308
Permits, 128
Permitting, 228, 242
Personal Lists, 339
Phased Success, 113
Plan Costs, 258
Planned, 218
Planner, 72
Group, 129, 138, 157, 240, 247
Role, 72
Planning, 209, 352
Board, 253
Plant, 51, 138
Plant Leadership, 107
Plant Maintenance, 85
PM Activity Types, 264
PM Interface Components, 51
Pop up, 205
Position field, 142
Power User, 101–105, 107, 110
Predictability, 43
Preventing failure, 24
Preventive Maintenance, 171, 218, 269, 300, 342, 356
Effectiveness, 297
Functionality, 269, 271, 296
Program, 271
Success, 300
Print, 183
Priorities, 183, 191, 193, 203, 215, 350
Priority, 116
Problem, 176
Process flow, 166, 212
Process Functions, 337
Index

Process Hierarchy, 125
Process Knowledge for Craftsmen, 36
Procurement, 249
Production and Maintenance Partnership, 27
Production client, 50
Production Leader, 122
Production Planning Component, 59
Production Resource Tools, 247
Production Work Center, 136
Project Systems Component (PS), 52
Protect Variant, 330

Q
Quality of Information, 105
Quantity, 249
Query, 310, 311, 340
Questions, 85
Quick Reference, 340

R
Readiness Assessments, 100
Ready to Schedule, 225
Reference object, 189
Refurbishment, 219
Reliability, 86, 166, 171
 History, 166, 187, 202, 276, 289
Reliability Improvement Focus, 39
Reliability Success Mindsets, 25
Renewal, 120
Report, 307, 317
Reported by, 191
Reporting, 309, 322
 Selection, 313
 Structure, 312
Required field, 198
Requisitions, 231
Reservation, 231, 250
Resolution, 87
Re-Start, 294
Retrieving, 322
Return on Investment (ROI), 43, 45
Revision, 118
Revision Code, 87, 192, 241, 252
Role Definition, 72
Roles and Responsibilities, 29
Root Cause, 165, 308

S
Safety, 201
 Notification, 171
Sales Module, 47
SAP configuration, 49
SAP Effectiveness Metrics, 342
SAP Operating System, 62
SAP Permissions, 72
SAP PM
 Configuration, 63
 Education, 79
 Champion, 105, 106
 Installations, 263
 Readiness, 38
 Reporting Flexibility, 32
SAP Roles, 109
SAP Software Hierarchy, 61
Schedule Adherence, 269
Scheduling, 211, 232, 252, 304
 Parameters, 233, 291, 293, 298, 358
 Period, 292
 Types, 233
Screen Layout, 202
Screen Templates, 235
Search Criteria, 332
Search Engine Processing, 74
Selection
 Criteria, 326
 Options, 334
 Screen, 75, 319
 Variant, 319, 324, 326, 329
Sequence, 186
Serialization, 143
Service Entry, 232
Shift Factor, 293
Shift Planning, 255
Shift Tolerance, 293
Index

Shop Papers, 183, 251
Short Text, 188, 239
Show All, 321
Sign off, 94
Simultaneous implementation, 59
Single Cycle Set, 278, 288
Skill Sets, 332, 336
Sort Field, 138, 280
Sorting, 336
Specialized, 84
Spell check, 91
Spreadsheet, 339
Stamp, 204
Standalone systems, 45
Standard Analysis, 313, 316
Standardization, 306
Standardize, 301
Standard texts, 178
Start, 294
Start in Cycle, 294
Status profiles, 185, 186
Strategies, 358
Strategy Plans, 278
String Indicator, 132
Structure, 100, 325
 Indicator, 132, 159
Subject Code, 140, 191
Sub Orders, 241
Superior Equipment, 142
Symptoms, 204
System Condition, 118, 184, 221, 241, 247, 265, 285
System Enhancements, 66
System Status, 194, 222, 223

T

Task Codes, 140
Task List, 53, 250, 271, 273, 283, 289, 298, 346, 356, 357
 Header, 285
 Operations, 286
 Status, 274
 Type, 284
 Usage, 274

Teach, 83
Technical ID, 142
Technically Complete, 88, 222
Technical Objects, 342
Technical Object Structure, 125, 158, 343
TECO, 88
Test, 94, 95, 96
Time-Based, 203, 276, 281
Time Confirmation, 255, 355
Time stamp, 176
Time Success Factor, 27
Tips and Tricks, 339
Totaling, 336
Training, 92, 96, 106, 111, 121
 Environment, 112
 Manuals, 90
 Process, 107
Train the Trainer, 92
Transaction, 92
 Start, 178

U

Unloading Point, 250
Unplanned, 218
Usage, 285
User Configuration, 71
User-Defined Defaults, 340
User-Friendly, 343
User-specific, 184, 328, 332
User Status, 184, 185, 193, 194, 205, 224, 251, 266

V

Validate, 87
Value, 109
 Category, 236, 237
Variances, 235
Variant, 325, 329
 Attributes, 330
Visual aids, 90
Index

W
Warrantees, 149
Warranty, 229
Warranty Claim Processing, 66
Wild Cards, 333
Work Center, 244, 246
 Hierarchy, 159, 246
Work Centers, 59, 129
Work Clearance Management, 66
Work Flow, 182, 304, 322, 323, 325
 Process, 100, 108
Work Identification and Control, 32
Work Order, 209, 238, 352
 Assessment, 352

Configuration, 207
Create, 239
Estimates, 354
Types, 117, 263, 353
Work Packages, 298
Work Plan, 210
Wrapping, 177
Written Instruction, 90

X
XE, 26